A two-dimensional vector is a vector that has two elements, namely vertical (Y-axis) and horizontal (X-axis). Vectors in a flat plane (second dimension) are characterized by the X-axis and the Y-axis, which intersect at the center point O ( 0, 0)

A two-dimensional vector is a vector that has two elements, namely vertical (Y-axis) and horizontal (X-axis). Vectors in a plane (dimensional two) are characterized by an X-axis and a Y-axis, which intersect at the center point O (0, 0). Analytically, two-dimensional vectors can be presented according to their elements, namely:

Where x is the horizontal element. When x>0x > 0 (positive) then x has a direction to the right and when x<0x < 0 (negative) x has a direction to the left. Next, y is a vertical element. When y>0y > 0 (positive) then the direction is up and if y<0y < 0 (negative) the direction is down.

1. Vector Components, Column Vectors, and Row Vectors

Look at the vector in the following image Vector Columns In general, the vector a⃗\vec{a} in the image above can be written in columns as follows PQ⃗=a⃗=(31)\vec{PQ}=\vec{a}=\begin{pmatrix} 3 \\ 1 \end{pmatrix} Apart from column vectors, the vector a⃗\vec{a} can also be written as a row vector as follows PQ⃗=a⃗=(3,1)\vec{PQ}=\vec{a}=\begin{pmatrix} 3, 1\end{pmatrix}

(31)\begin{pmatrix} 3 \\ 1 \end{pmatrix} is called a column vector and (3,1)\begin{pmatrix} 3, 1\end{pmatrix} is called a row vector. 3 and 1 are components of the Vector a⃗\vec{a}.

A vector depicted on a coordinate plane has a horizontal component (movement to the right/left) and a vertical component (movement up/down). Therefore, vectors can be presented in columns. Vector Component PQβƒ—=(Horizontal componentvertical component)\vec{PQ}=\begin{pmatrix} \text{Horizontal component} \\ \text{vertical component}\end{pmatrix}

2. Position Vector

Position Vector is a vector that begins at the coordinate center O(0,0)O(0,0) and ends at a point (x,y)(x,y). Consider any point A(x1,y1)A(x_1, y_1) and point B(x2,y2)B(x_2, y_2) in the following Cartesian coordinates. Position Vector In the figure above, the vector a⃗\vec{a} represents a directed line segment from the origin O(0,0)O(0, 0) to the point A(x1,y1)A(x_1, y_1) or vector OA⃗\vec{OA}. Therefore, the vector a⃗\vec{a} can be written in column vector form
OA⃗=a⃗=(x1y1)\vec{OA}=\vec{a} = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}
The vector b⃗\vec{b} represents a directed line segment from the origin O(0,0)O(0, 0) to the point B(x2,y2)B(x_2, y_2) or vector OB⃗\vec{OB}. The vector b⃗\vec{b} can be written as
OB⃗=b⃗=(x2y2)\vec{OB}=\vec{b} = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}

Now consider the vector ABβƒ—\vec{AB}. We get the vector ABβƒ—\vec{AB} by drawing a line from point A to point B. As previously studied, the vector ABβƒ—\vec{AB} can be expressed in the form of a geometric addition of vectors, namely ABβƒ—=OBβƒ—βˆ’OAβƒ—\vec{AB} =\vec{OB}-\vec{OA} so ABβƒ—=OBβƒ—βˆ’OAβƒ—=bβƒ—βˆ’aβƒ—=(x2y2)βˆ’(x1y1)ABβƒ—=(x2βˆ’x1y2βˆ’y1)\begin{align*} \vec{AB}&=\vec{OB}-\vec{OA} \\ &=\vec{b}-\vec{a}\\ &= \begin{pmatrix}x_2\\y_2\end{pmatrix}-\begin{pmatrix}x_1\\y_1\end{pmatrix}\\ \vec{AB} &=\begin{pmatrix}x_2-x_1\\y_2-y_1\end{pmatrix} \end{align*}

3. Modulus or Vector Size

Modulus states the length or magnitude of the vector. Because the length or magnitude of a vector is always positive, the way to write the modulus uses the absolute sign (∣∣)\left( \lvert {} \rvert \right). VectorLength If the coordinates of the point P(x,y)P (x, y) are known then the length of the position vector OPβƒ—=(xy)\vec{OP}=\begin{pmatrix} x \\ y \end{pmatrix} is formulated using the Pythagorean theorem or as follows ∣OPβƒ—βˆ£=x2+y2\lvert \vec{OP} \rvert=\sqrt{x^2+y^2}.

Example 1
Given the vector OQ⃗=q⃗=(34)\vec{OQ}=\vec{q}=\begin{pmatrix}3 \\4 \end{pmatrix}. Determine the Length of Vector q⃗\vec{q}

Alternative solutions
∣qβƒ—βˆ£=32+42∣qβƒ—βˆ£=25∣qβƒ—βˆ£=5\begin{align*} & \lvert \vec{q} \rvert=\sqrt{3^2+4^2}\\ & \lvert \vec{q} \rvert=\sqrt{25}\\& \lvert \vec{q} \rvert=5\end{align*} So, the length of vector qβƒ—\vec{q} is 5 units

4. Unit vector

In the previous discussion, the unit vector of the vector aβƒ—\vec{a} was formulated: eaβƒ—=aβƒ—βˆ£aβƒ—βˆ£e_{\vec{a}}=\frac{\vec {a}}{\lvert \vec{a} \rvert} or a^=aβƒ— lvertaβƒ—βˆ£\widehat{a}=\frac{\vec{a}}{\ lvert \vec{a} \rvert}

In a column Vector, if a⃗=(xy),\vec{a}=\begin{pmatrix} x \\ y \end{pmatrix}, then a^=1x2+y2.(xy)\widehat{a}=\frac{1}{\sqrt{x^2+y^2}}.\begin{pmatrix} x \\ y \end{pmatrix}

5. Properties of Column Vector Operations

a. Vector Addition

Analytically, the addition of two vectors can be done as follows
aβƒ—+bβƒ—=(x1y1)+(x2y2)=(x1+x2y1+y2)\vec{a}+\vec{b} = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}+\begin{pmatrix} x_2 \\ y_2 \end{pmatrix}=\begin{pmatrix} x_1+x_2 \\ y_1+y_2 \end{pmatrix} If the two vectors are known to flank a certain angle, then calculations can be used using the cosine rule formula as in trigonometry. ![Vector Addition](/images/k12/vector/vector addition.jpg) When the angle between aβƒ—\vec{a} and bβƒ—\vec{b} is ΞΈ\theta, then ∣aβƒ—+bβƒ—βˆ£2=∣aβƒ—βˆ£+∣bβƒ—βˆ£+2∣aβƒ—βˆ£βˆ£bβƒ—βˆ£cos⁑θ∣aβƒ—+bβƒ—βˆ£=∣aβƒ—βˆ£+∣bβƒ—βˆ£+2∣aβƒ—βˆ£βˆ£bβƒ—βˆ£cos⁑θ\begin{align*} {\lvert \vec{a}+\vec{b} \rvert}^2&=\lvert \vec{a} \rvert+\lvert \vec{b} \rvert+2\lvert \vec{a} \rvert\lvert \vec{b} \rvert \cos \theta \\ \lvert \vec{a}+\vec{b} \rvert&=\sqrt{\lvert \vec{a} \rvert+\lvert \vec{b} \rvert+2\lvert \vec{a} \rvert\lvert \vec{b} \rvert\cos \theta } \end{align*}

If vectors are presented in component form (in the Cartesian plane) then addition can be done by adding the components.

For example:
a⃗=(xAyA)\vec{a} = \begin{pmatrix} x_A \\ y_A \end{pmatrix} and b⃗\vec{b} = (xByB)\begin{pmatrix} x_B \\ y_B \end{pmatrix} size a⃗+b⃗=(xA+xByA+yB)\vec{a}+\vec{b} = \begin{pmatrix} x_A+x_B \\ y_A+y_B \end{pmatrix}

Example 2
Given the vector aβƒ—=(2βˆ’3)\vec{a}=\begin{pmatrix} 2 \\ -3 \end{pmatrix} and the vector bβƒ—=(βˆ’43)\vec{b}=\begin{pmatrix} -4 \\ 3 \end {pmatrix}. Determine the vector sum of aβƒ—+bβƒ—\vec{a}+\vec{b}!
Alternative Solution
aβƒ—+bβƒ—\vec{a}+\vec{b} = (2+(βˆ’4)βˆ’3+3)=(βˆ’20)\begin{pmatrix} 2+(-4) \\ -3+3 \end{pmatrix}=\begin{pmatrix} -2 \\ 0 \end{pmatrix}

Example 3
Given the length of the vector |aβƒ—\vec{a}| = 2 and the vector length is |bβƒ—\vec{b}| = 4, the angle between vectors aβƒ—\vec{a} and bβƒ—\vec{b} is 60∘60^\circ, then:

∣aβƒ—+bβƒ—βˆ£=∣aβƒ—βˆ£+∣bβƒ—βˆ£+2∣aβƒ—βˆ£βˆ£bβƒ—βˆ£cos⁑θ=22+42+2.2.4.cos⁑60∘=4+16+16.12=28=27\begin{align*}\lvert \vec{a}+\vec{b} \rvert&=\sqrt{\lvert \vec{a} \rvert+\lvert \vec{b} \rvert+2\lvert \vec{a} \rvert \lvert \vec{b} \rvert \cos \theta } \\ &= \sqrt{2^2+4^2+2.2.4.\cos 60^\circ} \\ &= \sqrt{4+16+16.\tfrac{1}2} \\ &= \sqrt{28}\\ &=2\sqrt{7} \end{align*}

b. Vector Reduction

Analytically, if it is known Vector aβƒ—=(a1a2)\vec{a}=\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} and bβƒ—=(b1b2)\vec{b}=\begin{pmatrix} b_1 \\ b_2 \end{pmatrix} then the reduction of two vectors can be formulated aβƒ—βˆ’bβƒ—=(a1βˆ’b1a2βˆ’b2)\vec{a}- \vec{b}=\begin{pmatrix} a_1-b_1 \\ a_2-b_2 \end{pmatrix} Vector Subtraction Example 4 Given the vector pβƒ—=(6βˆ’3)\vec{p}=\begin{pmatrix} 6 \\ -3 \end{pmatrix} and the vector qβƒ—=(βˆ’43)\vec{q}=\begin{pmatrix} -4 \\ 3 \end {pmatrix}. Determine the vector of pβƒ—βˆ’qβƒ—\vec{p}-\vec{q}!
Alternative Solution
pβƒ—βˆ’qβƒ—\vec{p}-\vec{q} = (6βˆ’(βˆ’4)βˆ’3βˆ’3)=(10βˆ’6)\begin{pmatrix} 6-(-4) \\ -3-3 \end{pmatrix}=\begin{pmatrix} 10 \\ -6 \end{pmatrix}

c. Scalar Multiplication with Vectors

Multiplying a scalar by a vector will produce a vector with the same direction. The vector v⃗\vec{v} is parallel to the vector u⃗\vec{u}, written v⃗//u⃗\vec{v}//\vec{u} if:

  • If k>0k > 0, then vβƒ—\vec{v} is the direction of uβƒ—\vec{u}
  • If k<0k < 0, then vβƒ—\vec{v} is opposite to uβƒ—\vec{u} Vector Multiplication

Analytically, if we know the vector aβƒ—=(a1a2)\vec{a}=\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} then k.aβƒ—=(k.a1  k.a2)k.\vec{a}=\begin{pmatrix} k.a_1 \ \ k.a_2 \end{pmatrix}, where kk is a constant. Example 5
Given aβƒ—=(βˆ’23)\vec{a} = \begin{pmatrix} -2 \\3 \\\end{pmatrix} and bβƒ—=(4βˆ’2)\vec{b} = \begin{pmatrix}4 \\-2 \\\end{pmatrix} determine 3b⃗–12aβƒ—3\vec{b} – \frac{1}{2}\vec{a}! Alternative Solution
3b⃗–12aβƒ—=3(βˆ’23)βˆ’12(4βˆ’2)=(3.(βˆ’2)3(3))βˆ’(12(4)12(βˆ’2))=(βˆ’69)βˆ’(2βˆ’1)=(βˆ’6βˆ’29βˆ’(βˆ’1))=(βˆ’810)\begin{align*} 3\vec{b} – \frac{1}{2}\vec{a}&=3 \begin{pmatrix} -2 \\3 \\\end{pmatrix}-\frac{1}{2}\begin{pmatrix}4 \\-2 \\\end{pmatrix}\\ &= \begin{pmatrix} 3.(-2) \\3(3) \\\end{pmatrix}-\begin{pmatrix}\frac{1}{2}(4) \\\frac{1}{2}(-2) \\\end{pmatrix}\\&= \begin{pmatrix} -6 \\9 \\\end{pmatrix}-\begin{pmatrix}2 \\ -1 \\\end{pmatrix}\\&=\begin{pmatrix}-6-2 \\ 9-(-1) \\\end{pmatrix}\\&=\begin{pmatrix}-8 \\ 10 \\\end{pmatrix} \end{align*} **Example 6**
Determine whether the points P(1, –2), Q(2, 1), and R(4, 7) are collinear (straight).
**Alternative Solutions:**
Points P, Q and R are said to be collinear (in line) if points P, Q and R lie on the same line. Points P, Q and R will lie on the same line if and only if the vectors representing the directed line segments of the points P, Q and R have the same base and are parallel.
The vectors PQ⃗\vec{PQ} and PR⃗\vec{PR} have the same starting point.
Komponen vektor PQβƒ—=qβƒ—βˆ’pβƒ—=(21)βˆ’(1βˆ’2)=(13)\vec{PQ}=\vec{q}-\vec{p}=\begin{pmatrix}2 \\ 1 \end{pmatrix}-\begin{pmatrix}1 \\ -2 \end{pmatrix}=\begin{pmatrix}1 \\ 3 \end{pmatrix}
Komponen vektor PRβƒ—=rβƒ—βˆ’pβƒ—=(47)βˆ’(1βˆ’2)=(39)\vec{PR}=\vec{r}-\vec{p}=\begin{pmatrix}4 \\ 7 \end{pmatrix}-\begin{pmatrix}1 \\ -2 \end{pmatrix}=\begin{pmatrix}3 \\ 9 \end{pmatrix}

Two vectors are collinear if there is a number kk that satisfies PR⃗=k.PQ⃗\vec{PR}=k.\vec{PQ} and both vectors have the same origin. PR⃗=(39)=3(13)PR⃗=3PQ⃗\begin{align*} \vec{PR}&=\begin{pmatrix}3 \\ 9 \end{pmatrix}\\ &= 3\begin{pmatrix}1 \\ 3 \end{pmatrix}\\\vec{PR}&= 3\vec{PQ} \end{align*} Because PR⃗=3PQ⃗\vec{PR}=3\vec{PQ} means that the vector PQ⃗\vec{PQ} is parallel to the vector PR⃗\vec{PR} and both originate at point P. So, it can be concluded that point P, Q and R are points that are collinear (straight).

d. Similarity of two Vectors

Analytically, two Vectors a⃗=(a1a2)\vec{a}=\begin{pmatrix} a_1 \\ a_2 \\ \end{pmatrix} and b⃗=(b1b2)\vec{b}=\begin{pmatrix} b_1 \\ b_2 \end{pmatrix} are said to be equal if and only if a1=b1a_1=b_1 and a2=b2a_2=b_2

4. Standard Normal Base

Base definition

If each vector is 1 unit long and perpendicular to each other, then vβƒ—1,vβƒ—2,vβƒ—3,…,vβƒ—n\vec{v}_1,\vec{v}_2,\vec{v}_3,…,\vec{v}_n is called standard normal basis in VV space

Based on this definition, we can conclude that vectors:

  1. i^=(10)\widehat{i}=\begin{pmatrix} 1 \\0 \\\end{pmatrix} and \widehat{j}=\begin{pmatrix}0 \\1 \ \\end{pmatrix} is a standard normal basis in the vector space R2R^2 with i^\widehat{i} and j^\widehat{j} parallel to the X and Y axes respectively

  2. $\widehat{i}=\begin{pmatrix}1 \\0 \\0 \\\end{pmatrix},$ $\widehat{j}=\begin{pmatrix}0 \ \\1 \\0 \\\end{pmatrix}$ and $\widehat{k}=\begin{pmatrix}0 \\0 \\1 \\\end{ pmatrix}$ is a standard normal basis in the vector space $R^3$ with $\widehat{i}$, $\widehat{j}$ and $\widehat{k}$ parallel to the X, Y and Z axes.

Thus, if P is a point (x,y) and O(0,0), then the position vector $\vec{OP}$ can be written as a combination of two basis vectors $\vec{OP}=\vec{p}=\begin{pmatrix}x \\ y \\ \end{pmatrix}=x\begin{pmatrix} 1\\ 0\\ \end{pmatrix}+y\begin{pmatrix} 0\\ 1\\ \end{pmatrix}=x\widehat{i}+y\widehat{j}$

Example 7
Given the triangle OAB with vertices: O(0, 0), A(3, 1) and B(6, 5). $\vec{a}$ is the position vector of point 𝐴 and $\vec{b}$ is the position vector of point 𝐡. Express the vectors $\vec{a}$, $\vec{b}$ and $\vec{AB}$ in the form of basis vectors.
Alternative solution:
$\vec{a}=x_1\widehat{i}+y_1\widehat{j}=3\widehat{i}+\widehat{j}$
$\vec{b}=x_1\widehat{i}+y_1\widehat{j}=6\widehat{i}+5\widehat{j}$
$\vec{AB}=\vec{b}-\vec{a}=(6\widehat{i}+5\widehat{j})-(3\widehat{i}+\widehat{j})=3\widehat{i}+4\widehat{j}$

Exercise 3

  1. Look at the vector image on the side:
    Draw a vector Draw a vector:
    1. $3.\vec{u}$
    2. $-2.\vec{v}$
    3. $\vec{u} + \vec{v}$
    4. $2.\vec{u} – \vec{v}$
  2. If it is known that $\vec{u} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ and $\vec{v} = \begin{pmatrix}-4 \\ 1 \end{pmatrix}$ determine:
    1. $\vec{u}$
    2. $-3.\vec{v}$
    3. $3.\vec{u} + 2.\vec{v}$
    4. $2.\vec{v} – \vec{u}$
  3. Given the vectors $\vec{a} = \begin{pmatrix}2 \\-1 \\\end{pmatrix}$ and $\vec{b} = 2.\vec{a}$ , determine the vector $\vec{c} = \vec{a} + \vec{b}$
  4. Diketahui vector $\vec{a} = \begin{pmatrix}-2 \\ 4 \\ \end{pmatrix}$, $\vec{b} = \begin{pmatrix} x \\ \ y \\ \end{pmatrix}$ given c = $\begin{pmatrix}3 \\5 \\\end{pmatrix}$. Tentukan x given y if $\vec{c} = \vec{a} + \vec{b}$
  5. If the vector $\vec{m} = \begin{pmatrix}-8 \\ 4 \\ \end{pmatrix}$ and $\vec{n} = \begin{pmatrix}10 \\ -6 \\ \end{pmatrix}$ determine algebraically the vector of:
    1. $\frac{1}{2} \vec{m} – \frac{1}{2} \vec{n}$
    2. $\frac{1}{4} \vec{m} + \frac{1}{2} \vec{n}$
  6. Given $\vec{a} = \begin{pmatrix} -4 \\-2 \\\end{pmatrix}$ and $\vec{b} = \begin{pmatrix}1 \\ \\\end{pmatrix}$ determine $3\vec{b} – \frac{1}{2}\vec{a}$!
  7. If $\vec{a} = \begin{pmatrix}2 \\5 \\\end{pmatrix}$ and $\vec{b} = \begin{pmatrix}3 \\- 7 \\ \end{pmatrix}$ determine $2\vec{a} – \frac{1}{2}\vec{b}$!
  8. If $\vec{p} = \begin{pmatrix}5 \\-3 \\\end{pmatrix}$ and $\vec{q} = \begin{pmatrix}4 \\ -2 \\\end{pmatrix}$ determine $\frac{1}{2}\vec{b} – \frac{1}{2}\vec{q}$!
  9. If it is known that $\vec{p} = \begin{pmatrix}4 \\-6 \\ \end{pmatrix}$ and $\vec{q} = \begin{pmatrix} x \\ y \\ \end{pmatrix}$ determine x and y if $\vec{p} + \vec{q} = \begin{pmatrix} -2 \\ -3 \\ \end{pmatrix}$!
  10. If $\vec{a} = \begin{pmatrix}a_1 \\a_2 \\\end{pmatrix}$ and $\vec{b} = \begin{pmatrix}-9 \\ 2 \\\end{pmatrix}$ determine $a_1$ and $a_2$ if $\vec{a} – \vec{b} = \begin{pmatrix}4 \\7 \\\end {pmatrix}$!