A comprehensive guide to understanding and applying fundamental vector operations in mathematics and physics. Learn about vector addition, subtraction in geometric perspektive

1. Addition of Two Vectors

The sum of two or more vectors is called the result vector or resultant. Geometrically, there are 2 rules for adding two vectors, namely:

  1. Triangle rule

    Triangle Rule

  2. Parallelogram rule

    Parallelogram Rules

On Vector summation occurs:

  1. Commutative property
    a+b=b+a \overline{a}+\overline{b}=\overline{b}+\overline{a}
  2. Associative properties
    (a+b)+c=a+(b+c) \left( \overline{a}+\overline{b} \right)+\overline{c}=\overline{a}+\left( \overline{b}+\overline{c} \right)
  3. Identity element, namely the zero vector
    a+0=a=0+a \overline{a}+\overline{0}=\overline{a}=\overline{0}+\overline{a}
  4. Inverse add
    a+(a)=0 \overline{a}+(-\overline{a})=\overline{0}

2. Resultant of several vectors

Remembering the triangle rule and the associative nature of adding vectors, we can add vectors using polygons. Resultan Vector

3. Difference of Two Vectors

The difference between two vectors means adding the first vector to the opposite (negative) second vector. ab=a+(b) \overline{a}-\overline{b}=\overline{a}+(-\overline{b}) a \overline{a} minus b \overline{b} equals a \overline{a} plus the opposite of b \overline{b} . This is explained geometrically as follows Difference of Two Vectors

4. Multiplication of Vectors with Scalars

The product of a vector a \overline{a} with a scalar k is a vector whose length is k times the length of the vector a \overline{a} and whose direction depends on the value of k. Vector Multiplication From image AB=a, CD=2a, QP=a, \overrightarrow{AB}=\overline{a},\text{ }\overrightarrow{CD}=2\overline{a},\text{ }\overrightarrow{QP}=-\overline{a}, dan KR=3a \overrightarrow{KR}=-3\overline{a} maka CD=2AB \overrightarrow{CD}=2\overrightarrow{AB} dan KR=3QP \overrightarrow{KR}=3\overrightarrow{QP} atau KR=3AB \overrightarrow{KR}=-3\overrightarrow{AB} .
From this it can be understood that there are 3 possible products of a vector with a scalar k, namely

  1. If k>0 k>0 then k.a k.\overline{a} is a vector whose length k k times Vector a \overline{a} and is in the same direction as a \overline{a}
  2. If k=0 k=0 then k.a k.\overline{a} is a zero Vector
  3. If k<0 k<0 then k.a k.\overline{a} is a vector whose length is k k times Vector a \overline{a} and is in the opposite direction to a \overline{a}

If a \overline{a} is a non-zero vector and n,pR n,p\in R then it applies:

  1. na=n.a n\overline{a}=\left| n \right|.\left| \overline{a} \right|
  2. n(a)=na n(-\overline{a})=-n\overline{a}
  3. na=an n\overline{a}=\overline{a}n
  4. (np)a=n(pa) (np)\overline{a}=n(p\overline{a})
  5. (n+p)a=na+pa (n+p)\overline{a}=n\overline{a}+p\overline{a}
  6. n(a+b)=na+nb n(\overline{a}+\overline{b})=n\overline{a}+n\overline{b}

5. Position Vector

The position vector of point A with respect to center O is written OA \overrightarrow{OA} or a \overline{a} . The figure shows the positions of points A, B, and C with respect to center O, written OA,OB, \overrightarrow{OA},\overrightarrow{OB}, and OC \overrightarrow{OC} . The vectors OA,OB, \overrightarrow{OA},\overrightarrow{OB}, and OC \overrightarrow{OC} are called the position vectors of points A, B, and C. The position vectors of points A, B, and C are often written in lower case a,b, \overline{a},\overline{b}, and c \overline{c} . Position Vector Pay attention to ∆ABO, it can be seen that AB=AO+OBAB=OA+OBAB=OBOA \begin{align*} \overrightarrow{AB}=\overrightarrow{AO}+\overrightarrow{OB} \\ \overrightarrow{AB}=-\overrightarrow{OA}+\overrightarrow{OB} \\ \overrightarrow{AB}=\overrightarrow{OB}-\overrightarrow{OA} \end{align*} AB=ba \therefore \overrightarrow{AB}=\overline{b}-\overline{a}

Example

Example of vector drawing

Given the vectors a,b, \overline{a},\overline{b}, and c \overline{c} are depicted as follows Drawing Vector Draw the vector diagram above showing 2a+12b23c 2\overline{a}+\frac{1}{2}\overline{b}-\frac{2}{3}\overline{c} Alternative solutions Drawing Answer Vector

Example of vector proof using addition rules

Prove by the addition rule that AD+BC=AC+BD \overrightarrow{AD}+\overrightarrow{BC}=\overrightarrow{AC}+\overrightarrow{BD}

Alternative Solution
(AD+BC)(AC+BD)=OAD+BCACBD=O(ADAC)+(BCBD)=O(CA+AD)+(DBBC)=OCD+DC=OCC=O \begin{align*} (\overrightarrow{AD}+\overrightarrow{BC})-(\overrightarrow{AC}+\overrightarrow{BD})=\overrightarrow{O}\\ \overrightarrow{AD}+\overrightarrow{BC}-\overrightarrow{AC}-\overrightarrow{BD}=\overrightarrow{O}\\ (\overrightarrow{AD}-\overrightarrow{AC})+(\overrightarrow{BC}-\overrightarrow{BD})=\overrightarrow{O}\\ (\overrightarrow{CA}+\overrightarrow{AD})+(\overrightarrow{DB}-\overrightarrow{BC})=\overrightarrow{O}\\ \overrightarrow{CD}+\overrightarrow{DC}=\overrightarrow{O}\\ \overrightarrow{CC}=\overrightarrow{O} \end{align*} Jadi, AD+BC=AC+BD \overrightarrow{AD}+\overrightarrow{BC}=\overrightarrow{AC}+\overrightarrow{BD} (Terbukti)

Example of geometric proof

In the trapezoid ABCD, the midpoints on sides AB, BC, CD, and DA are given, namely points P, Q, R, and S, as in the picture. Prove that PQRS is a parallelogram.

Alternative solutions
Look at the AC diagonal
PQ=PB+BQPQ=12AB+12BCPQ=12(AB+BC)PQ=12AC \begin{align*} \overrightarrow{PQ}=\overrightarrow{PB}+\overrightarrow{BQ} \\ \overrightarrow{PQ}=\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{BC} \\ \overrightarrow{PQ}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{BC}) \\ \overrightarrow{PQ}=\frac{1}{2}\overrightarrow{AC} \end{align*} SR=SD+DRPQ=12AD+12DCPQ=12(AD+DC)SR=12AC \begin{align*} \overrightarrow{SR}=\overrightarrow{SD}+\overrightarrow{DR} \\ \overrightarrow{PQ}=\frac{1}{2}\overrightarrow{AD}+\frac{1}{2}\overrightarrow{DC} \\ \overrightarrow{PQ}=\frac{1}{2}(\overrightarrow{AD}+\overrightarrow{DC}) \\ \overrightarrow{SR}=\frac{1}{2}\overrightarrow{AC} \end{align*} This means that PQ=SR\overrightarrow{PQ}=\overrightarrow{SR} and PQ\overrightarrow{PQ} are parallel to SR\overrightarrow{SR}
So, PQRS is a parallelogram.

Example of geometric proof of vectors

Prove that the diagonals of parallelogram OABC intersect each other in the middle

Alternative solutions
Look at the parallelogram OABC beside.
Geometric proof of vectors The position vectors of points A, B, and C are a,b, \overline{a},\overline{b}, and c \overline{c} .
M midpoint AC \overrightarrow{AC} , so that OM=OA+AMOM=OA+12ACOM=OA+12(OCOA)OM=12(OA+OC)OM=12(a+c) \begin{align*} \overrightarrow{OM}&=\overrightarrow{OA}+\overrightarrow{AM} \\ \overrightarrow{OM}&=\overrightarrow{OA}+\frac{1}{2}\overrightarrow{AC} \\ \overrightarrow{OM}&=\overrightarrow{OA}+\frac{1}{2}(\overrightarrow{OC}-\overrightarrow{OA}) \\ \overrightarrow{OM}&=\frac{1}{2}(\overrightarrow{OA}+\overrightarrow{OC}) \\ \overrightarrow{OM}&=\frac{1}{2}(\overline{a}+\overline{c}) \end{align*} The midpoint OB \overrightarrow{OB} is determined by 12b \frac{1}{2}\overline{b} , then 12b=12(OA+AB)12b=12(a+OC)12b=12(a+OC)12b=12(a+c) \begin{align*} \frac{1}{2}\overline{b}&=\frac{1}{2}(\overrightarrow{OA}+\overrightarrow{AB}) \\ \frac{1}{2}\overline{b}&=\frac{1}{2}(\overline{a}+\overrightarrow{OC}) \\ \frac{1}{2}\overline{b}&=\frac{1}{2}(\overline{a}+\overrightarrow{OC}) \\ \frac{1}{2}\overline{b}&=\frac{1}{2}(\overline{a}+\overline{c}) \end{align*} Thus, the midpoint AC \overrightarrow{AC} is determined by 12(a+c) \frac{1}{2}(\overline{a}+\overline{c}) and the midpoint OB \overrightarrow{OB} is determined by 12b=12(a+c) \frac{1}{2}\overline{b}=\frac{1}{2}(\overline{a}+\overline{c}) . This shows that the diagonals OB \overrightarrow{OB} and AC \overrightarrow{AC} intersect each other in the middle

Practice Questions

  1. Draw the following vectors

    • v=a+bc \overline{v}=\overline{a}+\overline{b}-\overline{c}
    • w=23a+b3c \overline{w}=-\frac{2}{3}\overline{a}+\overline{b}-3\overline{c}
  2. It is known that ABCDE is a regular pentagon
    Keep it simple

    • AE+EC+CDAB \overrightarrow{AE}+\overrightarrow{EC}+\overrightarrow{CD}-\overrightarrow{AB}
    • AB+BCECDE \overrightarrow{AB}+\overrightarrow{BC}-\overrightarrow{EC}-\overrightarrow{DE}
  3. If points A, B, and M have position vectors a,b \overline{a},\overline{b} and m \overline{m} with respect to point O and point M is the midpoint of line segment AB, prove that m=12(a+b) \overline{m}=\frac{1}{2}(\overline{a}+\overline{b})

  4. In the following picture, it can be seen that PQRS is a parallelogram. A and B are the midpoints of PQ and PS Jika RA=u \overrightarrow{RA}=\overline{u} dan RB=v \overrightarrow{RB}=\overline{v} , nyatakan:

    • PQ \overrightarrow{PQ} and RS \overrightarrow{RS} in the form u \overline{u} and v \overline{v}
    • PQ \overrightarrow{PQ} and RS \overrightarrow{RS} in the form u \overline{u} and v \overline{v}
  5. In ∆ABC, AB,BC \overrightarrow{AB},\overrightarrow{BC} and CA \overrightarrow{CA} represent the vectors a,b, \overline{a},\overline{b}, and c \overline{ c} . P and Q are the midpoints of BC and CA. Suppose the line passing through Q is parallel to BC and intersects AB at R.

    • Prove that QR \overrightarrow{QR} represents the Vector 12c+ka \frac{1}{2}\overline{c}+k\overline{a} for some k k
    • Prove that QR \overrightarrow{QR} represents the Vector pb p\overline{b} for some p p
    • By using a+b+c=O; \overline{a}+\overline{b}+\overline{c}=\overrightarrow{O}; prove that if (l+k)a+(l+12)c=O, (l+k)\overline{a}+\left( l+\frac{1}{2} \right)\overline{c}=\overrightarrow{O}, then k=12 k=\frac {1}{2} and l=12 l=-\frac{1}{2}