This time we will discuss the formula for the sum and difference of two angles in trigonometry along with evidence and example questions

Table Of Contents

Trigonometry is Mathematics material that is always available at every grade level in high school, whether in class X, XI or XII. In class X there are ratios, functions and trigonometric identities. In Class XI there are Trigonometric Equations and Formulas for the Sum and Difference of two angles. Meanwhile, in class XII, you will encounter trigonometry when calculating indefinite integrals and definite integrals from trigonometric functions.

This time, we will learn together about Formulas for Sum and Difference of Angles in Trigonometry. This is advanced trigonometry material. This material is used to calculate trigonometric angle values ​​that are not special. For example sin75\sin 75^\circ, we can write it as the sum of the special angles sin75=sin(45+30)\sin 75^\circ=\sin (45^\circ+30^\circ). For example, again cos15\cos 15^\circ, we can write it by subtracting or differenting the special angle cos15=cos(4530)\cos 15^\circ=\cos (45^\circ-30^\circ).

To make it easier to understand this material, of course you must first understand the trigonometry lesson in class Well, don’t forget this material, because this material is one of the prerequisites for understanding this module. Come on, don’t be afraid and don’t know how to do trigonometry, let’s learn gradually and be sure we can do it…

1. Formulas for cos(α+β)\cos(\alpha+\beta) and cos(αβ)\cos(\alpha-\beta)

Pembuktian formula cos(α+β)=cosαcosβsinαsinβ\cos(\alpha+\beta)=\cos\alpha \cos\beta -\sin\alpha \sin\beta

Let’s prove both formulas. There are 2 ways to prove it

Method 1: Using the unit circle, find the distance between two points

Consider the unit circle and 3 circles whose angles are α\alpha, β\beta, and β-\beta.

Trigonometry unit circle

The figure above is the unit circle with center O and radius rr. Consider two triangles namely POR\vartriangle POR and SOQ\vartriangle SOQ with POR\angle POR and SOQ\angle SOQ such that PR=SQPR=SQ.

By proving PR=SQPR=SQ, we obtain cos(α+β)=sinαcosβ+cosαsinβ\cos(\alpha + \beta ) = \sin \alpha \cos \beta + \cos \alpha \sin \beta From this image, it is obtained
OP=OQ=OR=OS=r OP=OQ=OR=OS = r The polar coordinates are: point P(r,0) P(r, 0),
point Q(rcosα,rsinα)Q(r \cos \alpha, r \sin \alpha ),
titik R(rcos(α+β),rsin(α+β))R(r \cos(\alpha + \beta ), r \sin(\alpha + \beta )) , and point S(rcosβ,rsinβ) S(r \cos \beta , -r \sin \beta ) .
Remember

  1. Concept of distance between two points A(x1,y1x_1,y_1) and B(x2,y2x_2,y_2): AB=(x2x1)2+(y2y1)2AB2=(x2x1)2+(y2y1)2 \begin{align*} AB &= \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2 } \\ AB^2 &= (x_2-x_1)^2 + (y_2-y_1)^2 \end{align*}
  2. Identitas trigonometri: sin2A+cos2A=1 \sin ^2 A + \cos ^2 A = 1

Pembuktian formula sin(α+β)=sinαcosβcosαsinβ\sin(\alpha+\beta)=\sin\alpha \cos\beta -\cos\alpha \sin\beta
Finding PR Distance:
P(r,0) P(r, 0) and R(rcos(α+β),rsin(α+β)) R (r \cos(\alpha + \beta ) , r \sin(\alpha + \beta )) with the concept of distance between two points above PR2=[rcos(α+β)r]2+[rsin(α+β)0]2=[rcos(α+β)r]2+[rsin(α+β)0]2=r2cos2(α+β)2r2cos(α+β)+r2+r2sin2(α+β)=r2[cos2(α+β)+sin2(α+β)]2r2cos(α+β)+r2=r2[1]2r2cos(α+β)+r2PR2=2r22r2cos(α+β) \begin{align*}PR^2 &= [r \cos(\alpha + \beta ) - r]^2 + [r \sin(\alpha + \beta ) - 0 ]^2 \\ &= [r \cos(\alpha + \beta ) - r]^2 + [r \sin(\alpha + \beta ) - 0 ]^2 \\ &= r^2 \cos ^2 (\alpha + \beta ) - 2r^2 \cos(\alpha + \beta ) + r^2 + r^2 \sin ^2 (\alpha + \beta ) \\ &= r^2 [\cos ^2 (\alpha + \beta ) + \sin ^2 (\alpha + \beta ) ]- 2r^2 \cos(\alpha + \beta ) + r^2 \\ &= r^2 [1 ]- 2r^2 \cos(\alpha + \beta ) + r^2\\ PR^2 &= 2r^2 - 2r^2 \cos(\alpha + \beta ) \end{align*} **Finding QS Distance :**
Q(rcosβ,rsinβ) Q(r \cos \beta , -r \sin \beta ) and S(rcosα,rsinα) S(r \cos \alpha, r \sin \alpha ) with the concept of distance between two points above QS2=[rcosαrcosβ]2+[rsinα(rsinβ)]2=[rcosαrcosβ]2+[rsinα+rsinβ]2=(r2cos2α2r2cosαcosβ+r2cos2β)+(r2sin2α+2r2sinαsinβ+r2sin2β)=r2(cos2α+sin2α)+r2(cos2β+sin2β)2r2(cosαcosβsinαsinβ)=r2(1)+r2(1)2r2(cosαcosβsinαsinβ)QS2=2r22r2(cosαcosβsinαsinβ) \begin{align*}QS^2 &= [r \cos \alpha - r \cos \beta]^2 + [r \sin \alpha - ( -r \sin \beta ) ]^2 \\ &= [r \cos \alpha - r \cos \beta]^2 + [r \sin \alpha + r \sin \beta ]^2 \\ &= (r^2 \cos ^2 \alpha - 2r^2 \cos \alpha \cos \beta + r^2 \cos ^2 \beta ) + ( r^2 \sin ^2 \alpha + 2r^2 \sin \alpha \sin \beta + r^2 \sin ^2 \beta ) \\ &= r^2 (\cos ^2 \alpha + \sin ^2 \alpha ) + r^2 ( \cos ^2 \beta + \sin ^2 \beta) -2r^2 ( \cos \alpha \cos \beta - \sin \alpha \sin \beta ) \\ &= r^2 (1 ) + r^2 ( 1 ) -2r^2 ( \cos \alpha \cos \beta - \sin \alpha \sin \beta ) \\ QS^2 &= 2r^2 -2r^2 ( \cos \alpha \cos \beta - \sin \alpha \sin \beta ) \end{align*} **The length of PR is the same as the length of QS** PR=QSPR2=QS22r22r2cos(α+β)=2r22r2(cosαcosβsinαsinβ)cos(α+β)=cosαcosβsinαsinβ \begin{align*}PR &= QS \\PR^2 &= QS^2 \\2r^2 - 2r^2 \cos(\alpha + \beta ) &= 2r^2 -2r^2 ( \cos \alpha \cos \beta - \sin \alpha \sin \beta ) \\ \cos(\alpha + \beta ) &= \cos \alpha \cos \beta - \sin \alpha \sin \beta \end{align*} So it is proven: cos(α+β)=cosαcosβsinαsinβ \cos(\alpha + \beta ) = \cos \alpha \cos \beta - \sin \alpha \sin \beta

Pembuktian formula cos(αβ)=cosαcosβ+sinαsinβ \cos(\alpha - \beta ) = \cos \alpha \cos \beta + \sin \alpha \sin \beta

The formula cos(αβ)\cos(\alpha-\beta) can be obtained with the negative angle relation property, namely cos(α+(β))\cos(\alpha+(-\beta))
Negative angle concept: sin(A)=sinA \sin (-A) = - \sin A and cos(A)=cosA \cos ( -A) = \cos A
cos(αβ)=cos(α+(β))=cosαcos(β) sinαsin(β)=cosαcosβsinα.(sinβ)=cosαcosβ+sinαsinβ \begin{align*} \cos(\alpha - \beta ) &= \cos(\alpha + (- \beta) ) \\ &= \cos \alpha \cos (-\beta) - \ sin \alpha \sin (- \beta ) \\ &= \cos \alpha \cos \beta - \sin \alpha . (- \sin \beta) \\ &= \cos \alpha \cos \beta + \sin \alpha \sin \beta \end{align*} So it is proven: cos(αβ)=cosαcosβ+sinαsinβ \cos(\alpha - \beta ) = \cos \alpha \cos \beta + \sin \alpha \sin \beta

Method 2: Using the Cosine Rule and Distance of Two Points

Look at the following picture,
Trigonometry unit circle In the picture, for example, a unit circle with radius r=1r= 1 and center O. Pay attention to SOQ\triangle SOQ, the polar coordinates are point S and point Q, namely S(cosβ,sinβ) S(\cos \beta , -\sin \beta) dan Q(cosα,sinα) Q(\cos \alpha , \sin \alpha ) serta OS = OQ = 1.
Remember
Identitas trigonometri: sin2A+cos2A=1 \sin ^2 A + \cos ^2 A = 1
Next, find the distance between points S and Q using the formula:
SQ2=(x2x1)2+(y2y1)2SQ2=(cosαcosβ)2+(sinαsinβ)2=(cos2α2cosαcosβ+cos2β)+(sin2α2sinαsinβ+sin2β)=(sin2α+cos2α)+(sin2β+cos2β)2(cosαcosβ+sinαsinb)=(1)+(1)2(cosαcosβ+sinαsinβ)SQ2=22(cosαcosb+sinasinb)\begin{align*}SQ^2 &= (x_2-x_1)^2 + (y_2-y_1)^2 \\ SQ^2 &= (\cos \alpha - \cos \beta)^2 + (\sin \alpha - \sin \beta)^2 \\ &= (\cos ^2 \alpha - 2\cos \alpha \cos \beta + \cos ^2 \beta) + (\sin ^2 \alpha - 2\sin \alpha \sin \beta + \sin ^2 \beta) \\ &= ( \sin ^2 \alpha + \cos ^2 \alpha ) + (\sin ^2 \beta + \cos ^2 \beta ) - 2(\cos \alpha \cos \beta + \sin \alpha \sin b) \\ &= (1) + (1 ) - 2(\cos \alpha \cos \beta + \sin \alpha \sin \beta) \\ SQ^2 &= 2 - 2(\cos \alpha \cos b + \sin a \sin b) \end{align*} **Cosine rule in triangle POQ**
Note that SOQ\triangle SOQ applies cosinus SQ2=OS2+OQ22.OS.OQ.cos(αβ)SQ^2 = OS^2 + OQ^2 - 2.OS.OQ .\cos (\alpha-\beta) and then substitusi SQ2=22( cosαcosβ+sinαsinβ) SQ^2 = 2 - 2(\ cos \alpha \cos \beta + \sin \alpha \sin \beta) SQ2=OS2+OQ22.OS.OQ.cos(αβ)SQ2=12+122.1.1.cos(αβ)22cos(αβ)=SQ2(substitusi SQ2)22cos(αβ)=22(cosαcosβ+sinαsinβ)cos(αβ)=cosαcosβ+sinαsinβ \begin{align*} SQ^2 &= OS^2 + OQ^2 - 2.OS.OQ .\cos (\alpha-\beta)\\ SQ^2 &= 1^2 + 1 ^2 - 2.1.1 . \cos (\alpha-\beta) \\ 2 - 2 \cos (\alpha-\beta) &= SQ^2 \\ & \text{(substitusi } SQ^2 ) \\ 2 - 2 \cos (\alpha-\beta) &= 2 - 2(\cos \alpha \cos \beta + \sin \alpha \sin \beta)\\ \cos (\alpha-\beta) &= \cos \alpha \cos \beta + \sin \alpha \sin \beta \end{align*}
so it is proven: cos(αβ)=cosαcosβ+sinαsinβ \cos (\alpha-\beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta

Example of a Trigonmetry Problem on the Sum and Difference of Two Cosine Angles

  1. Determine the value of cos15\cos 15^\circ

    Solution ✍️


    Multiply out cos(ab)=cosacosb+sinasinb\cos (a-b) = \cos a \cos b + \sin a \sin b. cos15=cos(4530)=cos45cos30+sin45sin30=122.123+122.12=146+142=14(6+2)=142(123+1)\begin{align*} \cos 15^\circ & = \cos (45^\circ - 30^\circ) \\ & = \cos 45^\circ \cos 30^\circ + \sin 45^\circ \sin 30^\circ \\ & = \frac{1}{2}\sqrt{2} . \frac{1}{2}\sqrt{3} + \frac{1}{2}\sqrt{2} . \frac{1}{2} \\ & = \frac{1}{4}\sqrt{6}+ \frac{1}{4}\sqrt{2} \\ & = \frac{1}{4}\left( \sqrt{6} +\sqrt{2}\right ) \\ & = \frac{1}{4}\sqrt{2} (\frac{1}{2}\sqrt{3} + 1) \end{align*} So, the value of cos105\cos 105^\circ is 142(123+1)\frac{1}{4}\sqrt{2} (\frac{1}{2}\sqrt{3} + 1).

  2. Determine the value of cos105\cos 105^\circ

    Solution ✍️


    Multiply out cos(a+b)=cosacosbsinasinb\cos (a+b) = \cos a \cos b - \sin a \sin b. cos105=cos(60+45)=cos60cos45sin60sin45=12.122123.122=142146=14(26)=142(1123)\begin{align*} \cos 105^\circ & = \cos (60^\circ + 45^\circ) \\ & = \cos 60^\circ \cos 45^\circ - \sin 60^\circ \sin 45^\circ \\ & = \frac{1}{2}. \frac{1}{2}\sqrt{2} - \frac{1}{2}\sqrt{3} . \frac{1}{2}\sqrt{2} \\ & = \frac{1}{4}\sqrt{2}- \frac{1}{4}\sqrt{6} \\ & = \frac{1}{4}\left( \sqrt{2} -\sqrt{6}\right ) \\ & = \frac{1}{4}\sqrt{2} (1-\frac{1}{2}\sqrt{3}) \end{align*}

  3. Determine the value of cos88cos58+sin88sin58\cos 88^\circ \cos 58^\circ + \sin 88^\circ \sin 58^\circ

    Solution ✍️


    Multiply out cosacosb+sinasinb=cos(ab) \cos a \cos b + \sin a \sin b=\cos (a-b). cos88cos58+sin88sin58=cos(8858)=cos30=123\begin{align*} \cos 88^\circ \cos 58^\circ + \sin 88^\circ \sin 58^\circ & = \cos (88^\circ-58^\circ)\\ &= \cos 30^\circ \\ &= \frac{1}{2}\sqrt{3}\end{align*} So, the value of cos88cos58+sin88sin58\cos 88^\circ \cos 58^\circ + \sin 88^\circ \sin 58^\circ is 123\frac{1}{2}\sqrt{3}

  4. Known Known cosx=35\cos x =\dfrac35 and cosy=1213\cos y = \dfrac{12}{13} (xx and yy are acute angles). Determine the value of cos(xy)\cos(x-y)!

    Solution ✍️


    Gunakan rumus cos(xy)=cosxcosy+sinxsiny \cos (x-y)=\cos x \cos y + \sin x \sin y.
    cos xx and cos yy are already known, so we need to determine sinx\sin x and siny\sin y first using the identity formula sin2x+cos2x=1\sin^2 x+\cos^2x=1 or you can also use draw a triangle.

From the Identity sin2x+cos2x=1\sin^2 x+\cos^2x=1,

  • so sin2x=1cos2x\sin^2 x=1-\cos^2x. sin2x=1cos2xsinx=+1cos2x  x thin, so sinx positif=+1(35)2=+1925=2525925=1625sinx=45\begin{align*}\sin^2 x&=1-\cos^2x\\ \sin x&=+\sqrt{1-\cos^2x} \text{ … }x \text { thin, so } \sin x \text{ positif}\\ &=+\sqrt{1-\left(\frac35\right)^2}\\ &=+\sqrt{1-\frac{9}{25}}\\ &=\sqrt{\frac{25}{25}-\frac{9}{25}}=\sqrt{\frac{16}{25}}\\ \sin x&=\frac{4}{5}\end{align*}

  • next sin2y=1cos2y\sin^2 y=1-\cos^2y. sin2y=1cos2ysiny=+1cos2y  y thin, so siny positif =+1(1213)2=+1144169=169169144169=25169siny=513\begin{align*}\sin^2 y&=1-\cos^2y\\ \sin y&=+\sqrt{1-\cos^2y} \text{ … }y \text { thin, so } \sin y \text{ positif }\\ &=+\sqrt{1-\left(\frac{12}{13}\right)^2}\\ &=+\sqrt{1-\frac{144}{169}}\\ &=\sqrt{\frac{169}{169}-\frac{144}{169}}=\sqrt{\frac {25}{169}}\\ \sin y&=\frac{5}{13}\end{align*}

  • calculates the value of cos(xy)\cos (x-y) cos(xy)=cosxcosy+sinxsiny=(35)(1213)+(45)(513)=3665+2065=5665\begin{align*} \cos (x-y)&=\cos x \cos y + \sin x \sin y \\ &=\left(\frac{3}{5}\right)\left(\frac{12}{13}\right) + \left(\frac{4}{5}\right)\left(\frac{5}{13}\right) \\ &=\frac{36}{65} + \frac{20}{65} \\ &=\frac{56}{65} \end{align*} So, the value of cos(xy)=5665\cos(x-y)=\dfrac{56}{65}

2. Formulas for sin(α+β)\sin(\alpha+\beta) and sin(αβ)\sin(\alpha-\beta)

To prove the formulas sin(α+β)sin(\alpha+\beta) and sin(αβ)sin(\alpha-\beta) above, we simply use the properties of the angle relations in quadrant I from the proof of cos(α+β)cos(\alpha+\beta) above. Actually there is another way, namely by using the area of ​​the triangle. However, this time we only use angle relations in quadrant I.

Remember the angle relation sinA=cos(90A)\sin A=\cos (90^\circ-A)

Proof formula sin(α+β)=sinαcosβ+cosαsinβ \sin(\alpha + \beta ) = \sin \alpha \cos \beta + \cos \alpha \sin \beta

sin(α+β)=cos[90(α+β)]=cos[90αβ]=cos[(90α)β]=cos(90α)cosβ+sin(90α)sinβsin(α+β)=sinαcosβ+cosαsinβ \begin{align*} \sin ( \alpha + \beta ) &= \cos [90^\circ - ( \alpha + \beta )] \\ &= \cos [90^\circ - \alpha - \beta ] \\ &= \cos [(90^\circ - \alpha) - \beta ] \\ &= \cos (90^\circ - \alpha) \cos \beta + \sin (90^\circ - \alpha) \sin \beta \\ \sin ( \alpha + \beta ) &= \sin \alpha \cos \beta + \cos \alpha \sin \beta \end{align*} Jadi, prove : sin(α+β)=sinαcosβ+cosαsinβ \sin ( \alpha + \beta ) = \sin \alpha \cos \beta + \cos \alpha \sin \beta

Proof formula sin(αβ)=sinαcosβcosαsinβ \sin(\alpha - \beta ) = \sin \alpha \cos \beta - \cos \alpha \sin \beta

sin(αβ)=sin(α+(β))=sinαcos(β)+ cosαsin(β)=sinαcosβ+cosα.(sinβ)sin(αβ)=sinαcosβcosαsinβ \begin{align*} \sin ( \alpha - \beta ) &= \sin ( \alpha +(-\beta))\\ &= \sin \alpha \cos (-\beta ) + \ cos \alpha \sin ( - \beta ) \\ &= \sin \alpha \cos \beta + \cos \alpha . (- \sin \beta ) \\ \sin ( \alpha - \beta ) &= \sin \alpha \cos \beta - \cos \alpha \sin \beta \end{align*} Jadi, prove : sin(αβ)=sinαcosβcosαsinβ \sin ( \alpha - \beta ) = \sin \alpha \cos \beta - \cos \alpha \sin \beta

Example of a Trigonmetry Problem on the Sum and Difference of Two Sine Angles

1). Determine the value of sin15\sin 15^\circ

Solution ✍️


Multiply out sin(ab)=sinacosb+cosasinb\sin (a-b) = \sin a \cos b + \cos a \sin b. sin15=sin(4530)=sin45cos30cos45sin30=122.123+122.12=146142=14(62)=142(1231)\begin{align*} \sin 15^\circ & = \sin (45^\circ - 30^\circ) \\ & = \sin 45^\circ \cos 30^\circ - \cos 45^\circ \sin 30^\circ \\ & = \frac{1}{2}\sqrt{2} . \frac{1}{2}\sqrt{3} + \frac{1}{2}\sqrt{2} . \frac{1}{2} \\ & = \frac{1}{4}\sqrt{6}- \frac{1}{4}\sqrt{2} \\ & = \frac{1}{4}\left( \sqrt{6} -\sqrt{2}\right ) \\ & = \frac{1}{4}\sqrt{2} (\frac{1}{2}\sqrt{3} - 1) \end{align*} So, the value of sin15\sin 15^\circ is 142(1231)\frac{1}{4}\sqrt{2} (\frac{1}{2}\sqrt{3} - 1)

2). Determine the value of sin75\sin 75^\circ

Solution ✍️


Multiply out sin(a+b)=sinacosb+cosasinb\sin (a+b) = \sin a \cos b + \cos a \sin b. sin75=sin(45+30)=sin45cos30+cos45sin30=122.123+122.12=146+142=14(6+2)=142(123+1)\begin{align*} \sin 75^\circ & = \sin (45^\circ + 30^\circ) \\ & = \sin 45^\circ \cos 30^\circ + \cos 45^\circ \sin 30^\circ \\ & = \frac{1}{2}\sqrt{2}. \frac{1}{2}\sqrt{3} + \frac{1}{2}\sqrt{2} . \frac{1}{2} \\ & = \frac{1}{4}\sqrt{6}+ \frac{1}{4}\sqrt{2} \\ & = \frac{1}{4}\left( \sqrt{6} +\sqrt{2}\right ) \\ & = \frac{1}{4}\sqrt{2} (\frac{1}{2}\sqrt{3}+1) \end{align*} So, the value of sin75\sin 75^\circ is 142(123+1)\frac{1}{4}\sqrt{2} (\frac{1}{2}\sqrt{3}+1)

3). Determine the value of sin64cos56+cos64sin41\sin 64^\circ \cos 56^\circ + \cos 64^\circ \sin 41^\circ

Solution ✍️


Multiply out sinacosb+cosasinb=sin(a+b) \sin a \cos b + \cos a \sin b=\sin (a+b). sin64cos56+cos64sin56=sin(64+56)  =sin120=sin30=12\begin{align*} \sin 64^\circ \cos 56^\circ + \cos 64^\circ \sin 56^\circ & = \sin (64^\circ+56^\circ)\ \ &= \sin 120^\circ=\sin 30^\circ \\ &= \frac{1}{2}\end{align*} So, the value of the value of sin64cos56+cos64sin41\sin 64^\circ \cos 56^\circ + \cos 64^\circ \sin 41^\circ is 12\dfrac{1}{2}.

4). Given Given sinp=35\sin p =\dfrac35 and cosq=1213\cos q = \dfrac{12}{13} (pp in quadrant III and qq acute angle). Determine the value of sin(p+q)\sin(p+q)!

Solution ✍️


The multiplier is sin(p+q)=sinpcosq+cospsinq \sin (p+q)=\sin p \cos q + \cos p \sin q.
sin pp and cos qq are already known, so we need to determine cosp\cos p and sinq\sin q first using the identity formula sin2p+cos2q=1\sin^2 p+\cos^2q=1 or you can also use draw a triangle.
From the Identity sin2p+cos2q=1\sin^2 p+\cos^2q=1,

*) so cos2p=1sin2q\cos^2 p=1-\sin^2q.

cos2p=1sin2pcosp=1sin2p  p in quadrant III, so cosp negatif=1(35)2=1925=2525925=1625cosp=45\begin{align*}\cos^2 p&=1-\sin^2p\\ \cos p&=-\sqrt{1-\sin^2p} \text{ … }p \text { in quadrant III, so } \cos p \text{ negatif}\\ &=-\sqrt{1-\left(\frac35\right)^2}\\ &=-\sqrt{1-\frac{9}{25}}\\ &=-\sqrt{\frac{25}{25}-\frac{9}{25}}=-\sqrt{\frac{16}{25}}\\ \cos p&=-\frac{4}{5}\end{align*}

*) next sin2q=1cos2q\sin^2 q=1-\cos^2q.

sin2q=1cos2qsinq=+1cos2q  q thin, so sinq positif=+1(1213)2=+1144169=169169144169=25169sinq=513\begin{align*}\sin^2 q&=1-\cos^2q\\ \sin q&=+\sqrt{1-\cos^2q} \text{ … }q \text { thin, so } \sin q \text{ positif}\\ &=+\sqrt{1-\left(\frac{12}{13}\right)^2}\\ &=+\sqrt{1-\frac{144}{169}}\\ &=\sqrt{\frac{169}{169}-\frac{144}{169}}=\sqrt{\frac{25}{169}}\\ \sin q&=\frac{5}{13}\end{align*}

*) calculates the value of sin(p+q)\sin (p+q)

sin(x+y)=sinpcosq+cospsinq=(35)(1213)+(45)(513)=36652065=1665\begin{align*} \sin (x+y)&=\sin p \cos q + \cos p \sin q \\ &=\left(\frac{3}{5}\right)\left(\frac{12}{13}\right) + \left(-\frac{4}{5}\right)\left(\frac{5}{13}\right) \\ &=\frac{36}{65} - \frac{20}{65} \\ &=\frac{16}{65} \end{align*} So, the value of sin(p+q)=1665\sin(p+q)=\dfrac{16}{65}

3. Formulas for tan(α+β)\tan(\alpha+\beta) and tan(αβ)\tan(\alpha-\beta)

To prove the formulas tan(α+β)\tan(\alpha+\beta) and tan(αβ)\tan(\alpha-\beta) above we use the trigonometry formula for the sum of two angles cos(α+β)cos(\alpha+\beta) and cos(α+β)cos(\alpha+\beta ). Apart from that, we also use the trigonometric identity formula tanA=sinAcosB\tan A=\dfrac{\sin A}{\cos B}.

Proof of formula tan(α+β)=tanα+β1tantanβ \tan ( \alpha + \beta ) = \dfrac{\tan \alpha + \beta}{1 - \tan \tan \beta }

tan(α+β)=sin(α+β)cos(α+β)=sinαcosβ+cosαsinβcosαcosβsinαsinβ=sinαcosβ+cosαsinβcosαcosβsinαsinβ.1cosαcosβ1cosαcosβ=sinαcosβ+cosαsinβcosαcosβcosαcosβsinαsinβcosαcosβ=sinαcosβcosαcosβ+cosαsinβcosαcosβcosαcosβcosαcosβsinαsinβcosαcosβ=sinαcosα+sinβcosβ1sinαcosαsinβcosβtan(α+β)=tanα+tanβ1tanαtanβ\begin{align*} \tan ( \alpha + \beta ) & = \frac{ \sin ( \alpha + \beta ) }{\cos ( \alpha + \beta )} \\ & = \frac{\sin \alpha \cos \beta + \cos \alpha \sin \beta}{\cos \alpha \cos \beta - \sin \alpha \sin \beta} \\ & = \frac{\sin \alpha \cos \beta + \cos \alpha \sin \beta}{\cos \alpha \cos \beta - \sin \alpha \sin \beta} . \frac{\frac{1}{\cos \alpha \cos \beta}}{\frac{1}{\cos \alpha \cos \beta}} \\ & = \frac{\frac{\sin \alpha \cos \beta + \cos \alpha \sin \beta}{\cos \alpha \cos \beta}}{\frac{\cos \alpha \cos \beta - \sin \alpha \sin \beta}{\cos \alpha \cos \beta}} \\ & = \frac{\frac{\sin \alpha \cos \beta }{\cos \alpha \cos \beta} + \frac{\cos \alpha \sin \beta}{\cos \alpha \cos \beta}}{\frac{ \cos \alpha \cos \beta}{\cos \alpha \cos \beta} - \frac{ \sin \alpha \sin \beta}{\cos \alpha \cos \beta}} \\ & = \frac{\frac{\sin \alpha }{\cos \alpha } + \frac{ \sin \beta}{ \cos \beta}}{1 - \frac{ \sin \alpha }{\cos \alpha }\frac{ \sin \beta}{ \cos \beta}} \\ \tan ( \alpha + \beta ) & = \frac{ \tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta } \end{align*}

It is proven that tan(α+β)=tanα+tanβ1tanαtanβ \tan ( \alpha + \beta ) = \dfrac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta }

Proof of formula tan(αβ)=tanαtanβ1+tantanβ \tan ( \alpha - \beta ) = \dfrac{\tan \alpha - \tan \beta}{1 + \tan \tan \beta }

To prove this we use related angles in quadrant IV or negative angles. Remember that tan(A)=tanA\tan (-A)=-\tan A. tan(αβ)=tan(α+(β))=tanα+tan(β)1tanαtan(β)=tanαtanβ1tanα.(tanβ)=tanαtanβ1+tanαtanβ\begin{align*} \tan ( \alpha - \beta ) & = \tan ( \alpha + (- \beta )) \\ & = \frac{ \tan \alpha + \tan (-\beta )}{1 - \tan \alpha \tan (-\beta ) } \\ & = \frac{ \tan \alpha - \tan \beta }{1 - \tan \alpha . (- \tan \beta ) } \\ & = \frac{ \tan \alpha - \tan \beta }{1 + \tan \alpha \tan \beta } \end{align*}

Example Trigonometry Question Sum and Difference of Two Tangent Angles

1). Without using calculators and trigonometry tables. Determine the value of tan75\tan 75^\circ!

Solution ✍️


Use the formula tan(a+b)=tana+tanb1tana.tanb\tan (a+b) = \dfrac{\tan a + \tan b}{1-\tan a. \tan b}. tan75=tan(45+30)=tan45+tan301tan45tan30=1+13311.133=1+1331133×33=3+333=3+333×3+33+3=9+63+393=12+636tan75=2+3\begin{align*} \tan 75^\circ & = \tan ( 45^\circ + 30^\circ ) \\ & = \frac{ \tan 45^\circ + \tan 30^\circ}{1 - \tan 45^\circ \tan 30^\circ } \\ & = \frac{ 1 + \frac{1}{3} \sqrt{3} }{1 - 1.\frac{1}{3} \sqrt{3} } \\ & = \frac{ 1 + \frac{1}{3} \sqrt{3} }{1 - \frac{1}{3} \sqrt{3} } \times \frac{3}{3} \\ & = \frac{ 3 + \sqrt{3} }{3 - \sqrt{3} } \\ & = \frac{ 3 + \sqrt{3} }{3 - \sqrt{3} } \times \frac{ 3 + \sqrt{3} }{3 + \sqrt{3} } \\ & = \frac{ 9 + 6\sqrt{3} + 3 }{9 - 3 }\\& = \frac{ 12 + 6\sqrt{3} }{6 }\\ \tan 75^\circ & = 2 + \sqrt{3} \end{align*} So, the value of tan75=2+3\tan 75^\circ= 2+\sqrt{3}.

2). Determine the value of tan255\tan 255^\circ

Solution ✍️


Use the formula tan(ab)=tanatanb1+tana.tanb\tan (a-b) = \dfrac{\tan a - \tan b}{1+\tan a. \tan b}. tan255=tan(30045)=tan300tan451+tan300tan45=tan60tan451tan60tan45=31131=313+1×11=3+131×3+13+1=3+23+131=4+232=2+3\begin{align*} \tan 255^\circ &= \tan(300^\circ-45^\circ)\\ &= \frac{\tan 300^\circ - \tan 45^\circ}{1+\tan 300^\circ \tan 45^\circ}\\ &= \frac{-\tan 60^\circ - \tan 45^\circ}{1-\tan 60^\circ \tan 45^\circ}\\ &= \frac{-\sqrt{3} - 1}{1-\sqrt{3} \cdot 1}\\ &= \frac{-\sqrt{3}-1}{-\sqrt{3}+1}\times \frac{-1}{-1}\\ &= \frac{\sqrt{3}+1}{\sqrt{3}-1}\times \frac{\sqrt{3}+1}{\sqrt{3}+1}\\ &= \frac{3+2\sqrt{3}+1}{3-1}\\ &= \frac{4+2\sqrt{3}}{2}\\ &= 2+\sqrt{3} \end{align*} So, the value of tan255=2+3\tan 255^\circ= 2+\sqrt{3}.

3). Given: sinp=35\sin p =\dfrac35 and cosq=1213\cos q = \dfrac{12}{13} (pp in quadrant I and qq in quadrant IV). Determine the value of tan(p+q)\tan(p+q)!

Solution ✍️


Use the formula tan(a+b)=tana+tanb1tana.tanb\tan (a+b) = \dfrac{\tan a+\tan b}{1-\tan a. \tan b}.
sin pp and cos qq are already known, so we need to determine tanp\tan p and tanq\tan q first by just drawing a triangle.

Remember trigonometric ratios
sinp=oppositehypotenuse=demi\sin p =\dfrac{opposite}{hypotenuse}=\dfrac{de}{mi}
cosp=adjacenthypotenuse=sami\cos p =\dfrac{adjacent}{hypotenuse}=\dfrac{sa}{mi}
tanp=oppositeadjacent=desa\tan p =\dfrac{opposite}{adjacent}=\dfrac{de}{sa}
For sinp=35=demi\sin p =\dfrac35=\dfrac{de}{mi} then front 3 slopes 5 and the value of tanp\tan p is positive because it is in quadrant I.
For cosp=1213=sami\cos p =\dfrac{12}{13}=\dfrac{sa}{mi} then front 3 slopes 5 and the value of tanq\tan q is negative because it is in quadrant IV.
Look at the pictures!
tan 225

*) find the value tanp\tan p but first we need to find the side length of the triangle with angle pp using Pythagoras.

sa=5232=259=16=4sa=\sqrt{5^2-3^2}=\sqrt{25-9}=\sqrt{16}=4 So that the value of tanp=desa=34\tan p=\dfrac{de}{sa}=\dfrac{3}{4}.

*) find the value of tanq\tan q but first we need to find the side length of the triangle with angle qq using Pythagoras.

de=132122=169144=25=5de=\sqrt{13^2-12^2}=\sqrt{169-144}=\sqrt{25}=5 So the value of tanq=desa=512\tan q=-\dfrac{de}{sa}=-\dfrac{5}{12} (negative because it is in quadrant IV).

*) find the value tan(p+q)\tan (p+q).

tan(p+q)=tanp+tanq1tanp.tanq=34+(512)134.(512)=345121+1548=364820484848+1548=16486348=1663\begin{align*} \tan (p+q) &= \frac{\tan p+\tan q}{1-\tan p. \tan q}\\ &=\frac{\frac{3}{4}+\left(-\frac{5}{12}\right)}{1-\frac{3}{4}.\left(-\frac{5}{12}\right)}\\ &=\frac{\frac{3}{4}-\frac{5}{12}}{1+\frac{15}{48}}\\ &=\frac{\frac{36}{48}-\frac{20}{48}}{\frac{48}{48}+\frac{15}{48}}\\ &=\frac{\frac{16}{48}}{\frac{63}{48}}\\ &=\frac{16}{63} \end{align*} So, the value of tan(p+q)=1663\tan(p+q)=\dfrac{16}{63}