This time we will discuss the formula for the sum and difference of two angles in trigonometry along with evidence and example questions
Table Of Contents
Trigonometry is Mathematics material that is always available at every grade level in high school, whether in class X, XI or XII. In class X there are ratios, functions and trigonometric identities. In Class XI there are Trigonometric Equations and Formulas for the Sum and Difference of two angles. Meanwhile, in class XII, you will encounter trigonometry when calculating indefinite integrals and definite integrals from trigonometric functions.
This time, we will learn together about Formulas for Sum and Difference of Angles in Trigonometry. This is advanced trigonometry material. This material is used to calculate trigonometric angle values that are not special. For example sin75∘, we can write it as the sum of the special angles sin75∘=sin(45∘+30∘). For example, again cos15∘, we can write it by subtracting or differenting the special angle cos15∘=cos(45∘−30∘).
To make it easier to understand this material, of course you must first understand the trigonometry lesson in class Well, don’t forget this material, because this material is one of the prerequisites for understanding this module. Come on, don’t be afraid and don’t know how to do trigonometry, let’s learn gradually and be sure we can do it…
1. Formulas for cos(α+β) and cos(α−β)
Formula for the Sum and Difference of two angles for cosine
Let’s prove both formulas. There are 2 ways to prove it
Method 1: Using the unit circle, find the distance between two points
Consider the unit circle and 3 circles whose angles are α, β, and −β.
The figure above is the unit circle with center O and radius r.
Consider two triangles namely △POR and △SOQ with ∠POR and ∠SOQ such that PR=SQ.
By proving PR=SQ, we obtain cos(α+β)=sinαcosβ+cosαsinβ
From this image, it is obtained OP=OQ=OR=OS=r
The polar coordinates are:
point P(r,0), point Q(rcosα,rsinα), titik R(rcos(α+β),rsin(α+β)) ,
and point S(rcosβ,−rsinβ). Remember
Concept of distance between two points A(x1,y1) and B(x2,y2):
ABAB2=(x2−x1)2+(y2−y1)2=(x2−x1)2+(y2−y1)2
Identitas trigonometri: sin2A+cos2A=1
Pembuktian formula sin(α+β)=sinαcosβ−cosαsinβ Finding PR Distance: P(r,0) and R(rcos(α+β),rsin(α+β)) with the concept of distance between two points above
PR2PR2=[rcos(α+β)−r]2+[rsin(α+β)−0]2=[rcos(α+β)−r]2+[rsin(α+β)−0]2=r2cos2(α+β)−2r2cos(α+β)+r2+r2sin2(α+β)=r2[cos2(α+β)+sin2(α+β)]−2r2cos(α+β)+r2=r2[1]−2r2cos(α+β)+r2=2r2−2r2cos(α+β)
**Finding QS Distance :** Q(rcosβ,−rsinβ) and S(rcosα,rsinα)
with the concept of distance between two points above
QS2QS2=[rcosα−rcosβ]2+[rsinα−(−rsinβ)]2=[rcosα−rcosβ]2+[rsinα+rsinβ]2=(r2cos2α−2r2cosαcosβ+r2cos2β)+(r2sin2α+2r2sinαsinβ+r2sin2β)=r2(cos2α+sin2α)+r2(cos2β+sin2β)−2r2(cosαcosβ−sinαsinβ)=r2(1)+r2(1)−2r2(cosαcosβ−sinαsinβ)=2r2−2r2(cosαcosβ−sinαsinβ)
**The length of PR is the same as the length of QS**
PRPR22r2−2r2cos(α+β)cos(α+β)=QS=QS2=2r2−2r2(cosαcosβ−sinαsinβ)=cosαcosβ−sinαsinβ
So it is proven: cos(α+β)=cosαcosβ−sinαsinβ
Pembuktian formula cos(α−β)=cosαcosβ+sinαsinβ
The formula cos(α−β) can be obtained with the negative angle relation property, namely cos(α+(−β)) Negative angle concept: sin(−A)=−sinA and cos(−A)=cosA cos(α−β)=cos(α+(−β))=cosαcos(−β)−sinαsin(−β)=cosαcosβ−sinα.(−sinβ)=cosαcosβ+sinαsinβ
So it is proven: cos(α−β)=cosαcosβ+sinαsinβ
Method 2: Using the Cosine Rule and Distance of Two Points
Look at the following picture,
In the picture, for example, a unit circle with radius r=1 and center O. Pay attention to △SOQ, the polar coordinates are point S and point Q, namely
S(cosβ,−sinβ) dan Q(cosα,sinα) serta OS = OQ = 1. Remember Identitas trigonometri: sin2A+cos2A=1 Next, find the distance between points S and Q using the formula: SQ2SQ2SQ2=(x2−x1)2+(y2−y1)2=(cosα−cosβ)2+(sinα−sinβ)2=(cos2α−2cosαcosβ+cos2β)+(sin2α−2sinαsinβ+sin2β)=(sin2α+cos2α)+(sin2β+cos2β)−2(cosαcosβ+sinαsinb)=(1)+(1)−2(cosαcosβ+sinαsinβ)=2−2(cosαcosb+sinasinb)
**Cosine rule in triangle POQ** Note that △SOQ applies cosinus SQ2=OS2+OQ2−2.OS.OQ.cos(α−β) and then substitusi SQ2=2−2(cosαcosβ+sinαsinβ)SQ2SQ22−2cos(α−β)2−2cos(α−β)cos(α−β)=OS2+OQ2−2.OS.OQ.cos(α−β)=12+12−2.1.1.cos(α−β)=SQ2(substitusi SQ2)=2−2(cosαcosβ+sinαsinβ)=cosαcosβ+sinαsinβ so it is proven: cos(α−β)=cosαcosβ+sinαsinβ
Example of a Trigonmetry Problem on the Sum and Difference of Two Cosine Angles
Determine the value of cos15∘
Solution ✍️
Multiply out cos(a−b)=cosacosb+sinasinb.
cos15∘=cos(45∘−30∘)=cos45∘cos30∘+sin45∘sin30∘=212.213+212.21=416+412=41(6+2)=412(213+1)
So, the value of cos105∘ is 412(213+1).
Determine the value of cos105∘
Solution ✍️
Multiply out cos(a+b)=cosacosb−sinasinb.
cos105∘=cos(60∘+45∘)=cos60∘cos45∘−sin60∘sin45∘=21.212−213.212=412−416=41(2−6)=412(1−213)
Determine the value of cos88∘cos58∘+sin88∘sin58∘
Solution ✍️
Multiply out cosacosb+sinasinb=cos(a−b).
cos88∘cos58∘+sin88∘sin58∘=cos(88∘−58∘)=cos30∘=213
So, the value of cos88∘cos58∘+sin88∘sin58∘ is 213
Known Known cosx=53 and cosy=1312 (x and y are acute angles). Determine the value of cos(x−y)!
Solution ✍️
Gunakan rumus cos(x−y)=cosxcosy+sinxsiny. cos x and cos y are already known, so we need to determine sinx and siny first using the identity formula sin2x+cos2x=1 or you can also use draw a triangle.
From the Identity sin2x+cos2x=1,
so sin2x=1−cos2x.
sin2xsinxsinx=1−cos2x=+1−cos2x…x thin, so sinx positif=+1−(53)2=+1−259=2525−259=2516=54
next sin2y=1−cos2y.
sin2ysinysiny=1−cos2y=+1−cos2y…y thin, so siny positif =+1−(1312)2=+1−169144=169169−169144=16925=135
calculates the value of cos(x−y)cos(x−y)=cosxcosy+sinxsiny=(53)(1312)+(54)(135)=6536+6520=6556
So, the value of cos(x−y)=6556
2. Formulas for sin(α+β) and sin(α−β)
Formula for Sum and Difference of two angles for sine
To prove the formulas sin(α+β) and sin(α−β) above, we simply use the properties of the angle relations in quadrant I from the proof of cos(α+β) above. Actually there is another way, namely by using the area of the triangle. However, this time we only use angle relations in quadrant I.
Example of a Trigonmetry Problem on the Sum and Difference of Two Sine Angles
1). Determine the value of sin15∘
Solution ✍️
Multiply out sin(a−b)=sinacosb+cosasinb.
sin15∘=sin(45∘−30∘)=sin45∘cos30∘−cos45∘sin30∘=212.213+212.21=416−412=41(6−2)=412(213−1)
So, the value of sin15∘ is 412(213−1)
2). Determine the value of sin75∘
Solution ✍️
Multiply out sin(a+b)=sinacosb+cosasinb.
sin75∘=sin(45∘+30∘)=sin45∘cos30∘+cos45∘sin30∘=212.213+212.21=416+412=41(6+2)=412(213+1)
So, the value of sin75∘ is 412(213+1)
3). Determine the value of sin64∘cos56∘+cos64∘sin41∘
Solution ✍️
Multiply out sinacosb+cosasinb=sin(a+b).
sin64∘cos56∘+cos64∘sin56∘=sin(64∘+56∘)=21=sin120∘=sin30∘
So, the value of the value of sin64∘cos56∘+cos64∘sin41∘ is 21.
4). Given Given sinp=53 and cosq=1312 (p in quadrant III and q acute angle). Determine the value of sin(p+q)!
Solution ✍️
The multiplier is sin(p+q)=sinpcosq+cospsinq. sin p and cos q are already known, so we need to determine cosp and sinq first using the identity formula sin2p+cos2q=1 or you can also use draw a triangle. From the Identity sin2p+cos2q=1,
*) so cos2p=1−sin2q.
cos2pcospcosp=1−sin2p=−1−sin2p…p in quadrant III, so cosp negatif=−1−(53)2=−1−259=−2525−259=−2516=−54
*) next sin2q=1−cos2q.
sin2qsinqsinq=1−cos2q=+1−cos2q…q thin, so sinq positif=+1−(1312)2=+1−169144=169169−169144=16925=135
*) calculates the value of sin(p+q)
sin(x+y)=sinpcosq+cospsinq=(53)(1312)+(−54)(135)=6536−6520=6516
So, the value of sin(p+q)=6516
3. Formulas for tan(α+β) and tan(α−β)
Sum and Difference of two angles formula for tangent
To prove the formulas tan(α+β) and tan(α−β) above we use the trigonometry formula for the sum of two angles cos(α+β) and cos(α+β). Apart from that, we also use the trigonometric identity formula tanA=cosBsinA.
To prove this we use related angles in quadrant IV or negative angles. Remember that tan(−A)=−tanA.
tan(α−β)=tan(α+(−β))=1−tanαtan(−β)tanα+tan(−β)=1−tanα.(−tanβ)tanα−tanβ=1+tanαtanβtanα−tanβ
Example Trigonometry Question Sum and Difference of Two Tangent Angles
1). Without using calculators and trigonometry tables. Determine the value of tan75∘!
Solution ✍️
Use the formula tan(a+b)=1−tana.tanbtana+tanb.
tan75∘tan75∘=tan(45∘+30∘)=1−tan45∘tan30∘tan45∘+tan30∘=1−1.3131+313=1−3131+313×33=3−33+3=3−33+3×3+33+3=9−39+63+3=612+63=2+3
So, the value of tan75∘=2+3.
2). Determine the value of tan255∘
Solution ✍️
Use the formula tan(a−b)=1+tana.tanbtana−tanb.
tan255∘=tan(300∘−45∘)=1+tan300∘tan45∘tan300∘−tan45∘=1−tan60∘tan45∘−tan60∘−tan45∘=1−3⋅1−3−1=−3+1−3−1×−1−1=3−13+1×3+13+1=3−13+23+1=24+23=2+3
So, the value of tan255∘=2+3.
3). Given: sinp=53 and cosq=1312 (p in quadrant I and q in quadrant IV). Determine the value of tan(p+q)!
Solution ✍️
Use the formula tan(a+b)=1−tana.tanbtana+tanb. sin p and cos q are already known, so we need to determine tanp and tanq first by just drawing a triangle.
Remember trigonometric ratios sinp=hypotenuseopposite=mide cosp=hypotenuseadjacent=misa tanp=adjacentopposite=sade For sinp=53=mide then front 3 slopes 5 and the value of tanp is positive because it is in quadrant I. For cosp=1312=misa then front 3 slopes 5 and the value of tanq is negative because it is in quadrant IV. Look at the pictures!
*) find the value tanp but first we need to find the side length of the triangle with angle p using Pythagoras.
sa=52−32=25−9=16=4
So that the value of tanp=sade=43.
*) find the value of tanq but first we need to find the side length of the triangle with angle q using Pythagoras.
de=132−122=169−144=25=5
So the value of tanq=−sade=−125 (negative because it is in quadrant IV).
*) find the value tan(p+q).
tan(p+q)=1−tanp.tanqtanp+tanq=1−43.(−125)43+(−125)=1+481543−125=4848+48154836−4820=48634816=6316
So, the value of tan(p+q)=6316